

Harmonics Advanced Application Training

Eaton Application Engineering Meeting April 2011

© 2011 Eaton Corporation. All rights reserved.- Eaton Proprietary

Introduction - Harmonics

Utility is responsible for providing "clean" voltage Customer is responsible for not causing excessive current harmonics Utility can only be fairly judged if customer is within its current limits Harmonics cause voltage and current problems in power systems IEEE Std 519-1992 provides a basis for limiting harmonics Multiple methods exist for mitigating harmonics and "one size does not fit all"

Harmonics – it's not that complicated....

Which came first?

Voltage Distortion Current Distortion

- In this case...the Egg!
 - Current distortion causes Voltage distortion
 - Voltage distortion is created by pulling <u>distorted current</u> through an impedance
 - Amount of voltage distortion depends on:
 - System impedance
 - Amount of distorted current pulled through the impedance
 - If either increases, V_{THD} will increase

What's YOUR (Harmonic) Problem?

- Voltage Problem
- Current Problem
- Impedance Problem

Solutions exist for every problem but you have to understand the problem first!

Sources of Harmonics

General sources of harmonics

Power electronic equipment (drives, rectifiers, computers, etc.) Arcing devices (welders, arc furnaces, florescent lights, etc.) Iron saturating devices (transformers) Rotating machines (generators)

Most prevalent and growing harmonic sources

Adjustable frequency drives (AFD) Switch-mode power supplies (computers) Fluorescent lightning

Internal vs. External Sources

Some harmonic sources are internal VFDs, switch mode power supplies, etc.

Other harmonic sources are external Customers sharing the same line

Is the voltage distortion caused by you or your neighbor? Establish a baseline (your neighbor's load) Determine the incremental change (your load)

Harmonic Limits System Issues

Powering Business Worldwide

© 2011 Eaton Corporation. All rights reserved.- Eaton Proprietary

Expected Harmonics

<u>Source</u>	Typical Harmonics*
6 Pulse Drive/Rectifier	5, 7, 11, 13, 17, 19
12 Pulse Drive/Rectifier	11, 13, 23, 25
18 Pulse Drive	17, 19, 35, 37
Switch-Mode Power Supply	3, 5, 7, 9, 11, 13
Fluorescent Lights	3, 5, 7, 9, 11, 13
Arcing Devices	2, 3, 4, 5, 7
Transformer Energization	2, 3, 4

* Generally, magnitude decreases as harmonic order increases

H = NP+/-1 i.e. 6 Pulse Drive - 5, 7, 11, 13, 17, 19,...

Harmonic Sources – Continuous Current

Harmonic Sources – Transformer Inrush

Harmonic sources don't have to be continuous...

Think...

- Soft starters
- Transformers
- Welding

Harmonics can "kick" your \$@(()!!#\$ (system)

Harmonic Symptoms/Concerns

Equipment Failure and Misoperation

Notching (electronic control malfunctioning, regulator misoperation) Overheating/Failure (transformers, motors, cables/neutral) Nuisance Operation (fuses, breakers) Insulation deterioration Audible noise in electrical equipment

Economic Considerations

Oversizing (equipment is sized larger to accommodate harmonics) Losses/Inefficiencies/PF Penalties Inconsistent meter reading

Harmonic Resonance with Power Factor Correction Capacitors

... But Remember

"Harmonics are not a problem unless they are a problem!"

Harmonics and Heating

Std Transformer – Max Temp – 176 F

Load 100% Harmonics

- 66.6

۴F

Voltage Notching

Neutral Heating – Oversize Equipment

3rd Harmonic Summation in Neutral

FIGURE 2 - Unbalanced Single Phase Loads with Triplen Harmonics

3rd Harmonic Summation in Neutral

© 2011 Eaton Corporation. , an agrication reserved. Eaton rappietary

Harmonics and Motor Heating

Motor Heating and Vibrations

Magnetic fields caused by negative sequence harmonics currents of the 5th and 11th order rotate in the opposite sequence as the fundamental: C-B-A to A-B-C.

Copyright 2007 Mike Holt Enterprises, Inc.

on the gas

and one on

the brake

Generator Concerns

Generator impedance (16-18%) is generally 3-4 times the equivalent source transformer (5-6%)

Utility Source 4.4% Vthd

Generator Source 13% Vthd

Same Load

Notching and Generators

Generator Source may result in larger commutation notches and transients

Example – Generator Sync Failure

Generator 1 (Loaded)

Generator 2 (Unloaded)

-Œ

Example – Generator Sync Failure

Solution: Series-rated surge protector/ring-wave filter

Generator Filter – UPS Filter On/Off

Utility Source

Generator Source

-G

Harmonic Filter ON Harmonic Filter ON Harmonic Filter OFF

Power Systems Experience Center

- Purpose: to demonstrate and test PQ problems and solutions
 - Full-scale power system
 - Demystify solutions
 - "Seeing is Believing"
 - Technical vs. Economic Solutions

www.eaton.com/experience

Equipment (PF/Harmonic Related)

- Fixed capacitors
- Switched capacitors
- Static switched capacitor Active Filters
- **Broadband Filters**

- Passive (Fixed) Filters
- Passive (Switched) Filters
 HMT Transformers
- Reactors

- 3rd Harmonic Filter
- K-Rated Transformers
- Phase shifting transformers

Power Systems Experience Center – Live Tour

Specifications

- What are some of the specs that you see???
 - Must comply with IEEE519 Standard
 - Must maintain less than 5% THD
 - Must use active harmonic cancellation
 - Customer must not exceed 8% TDD
- What do these all mean???

Terminology

- Total Harmonic Distortion THD
 - Harmonic current distortion in % of fundamental load current (instantaneous)
- Total Demand Distortion TDD
 - Harmonic current distortion in % of max demand load current (15 - 30min)
- Harmonic Current I_h
 - Harmonic current distortion for individual harmonic orders (h)
- Fundamental Current I₁
 - Current at fundamental frequency (60hz) excluding harmonics

Terminology

- Short Circuit Current I_{SC}
 - Maximum three phase short circuit current available at the point of common coupling
- Demand Load Current I_L
 - Sum of max load and harmonic currents
 - 15 or 30 minute demand, not momentary peak current
 - Common to use transformer full load current if planning for new load
- Point of Common Coupling PCC
 - Closest point where another customer may interface with the utility

IEEE 519-1992 Recommendations

The Institute of Electrical and Electronics Engineers (IEEE) has set guidelines for applying limits to the level of harmonic distortion that a utility customer may inject into the power system. The guidelines pertain to percent harmonic current and voltage distortion at the point of common coupling (PCC), which is defined as the point where the utility connects to multiple customers.

Application Class	Example	THD (Voltage)	
Special System	Hospital	3%	
General System	WWTP	5%	
Dedicated System	AFD's Only	10%	

Voltage distortion limits @ PCC:

IEEE 519-1992 Recommendations

IEEE 519-1992 recommends different limits on Individual Harmonics (I_h) and Total Demand Distortion (TDD), depending on the I_{SC} / I_L ratio. I_{SC} is the short circuit current at the PCC, and I_L is the maximum demand load current (fundamental) at the PCC. More current distortion is allowed at higher I_{SC} / I_L ratios, since voltage distortion decreases as the ratio increases.

Harmonic current distortion limits (I_h and TDD in % of I_L (\leq 69KV):

I _{SC} /I _L	I_h < 11	11 ≤ I_h ≤ 17	17 ≤ I _h ≤ 23	$23 \le \mathbf{I_h} \le 35$	TDD
< 20	4.0	2.0	1.5	0.6	5.0
20 – 50	7.0	3.5	2.5	1.0	8.0
50 – 100	10.0	4.5	4.0	1.5	12.0
100 – 1000	12.0	5.5	5.0	2.0	15.0
> 1000	15.0	7.0	6.0	2.5	20.0

Powering Business Worldwide

© 2011 Eaton Corporation. All rights reserved.- Eaton Proprietary

Current Harmonic Limits Vary

- I_{SC}/I_L ratio shows relative size of the load compared to the utility system
 - Larger loads have greater ability to cause voltage distortion on the utility system
- System short circuit vs. load size (I_{SC}/I_L)
 - Larger load: stricter limits
 - Weaker system: stricter limits
- Higher order current harmonics
 - Stricter limits for higher order harmonics

Harmonic Limits

- Where to assess the limits?
 - Point of Common Coupling (PCC)
- Which row of current limits applies?
 - Determine I_{SC}/I_L ratio
- How to calculate current harmonics for limit assessment?
 - Total Demand Distortion (TDD) versus Total Harmonic Distortion (THD)

Point of Common Coupling

- PCC is where harmonic limits are assessed
- Very misunderstood and misapplied part of IEEE- 519
- Prevent one customer from harming another
- Not intended to be applied within a user's system
- Some customers "voluntarily" comply to IEEE limits within their own systems

Point of Common Coupling

I_{SC}/I_L ratio

- Also proportional to kVA_{SC}/kVA_L
- kVA_{SC} is approximately = kVA_{Transf}/Z_{Transf}
- Example:
 - Transformer kVA = 1000, Z = 5%
 - kVA_{SC} = 1000/0.05 = 20,000
 - Peak Demand = 500 kVA
 - Ratio = 20,000/500 = 40
- If the transformer was smaller or the load was larger, the ratio would be smaller and visa versa

Point of Common Coupling

 PCC is where another customer can be served by the utility

Total Current – Why is this Important?

Point of Common Coupling

- True PCC will often be at MV transformer primary
 - Regardless of transformer ownership or meter location
- Not often practical to perform MV measurements
- Common to measure on LV secondary
 - Do what we can safely and easily
 - Use I_{SC}/I_L ratio from primary to determine current limits
 - LV measurements are sufficient most of the time
 - If you pass on the secondary, you will pass on primary
- If dispute between utility and customer, it may be necessary to measure or calculate harmonics at the MV transformer primary

Total Demand Distortion

- Harmonic meters measure THD
 - Individual harmonics in % of I₁ (fundamental)
- IEEE-519 current harmonic limits use TDD
 - Individual harmonics in % of I_L (load)
- PX Meters measure TDD (...sort of)

Harmonics

$$\% THD_{I} = \frac{\sqrt{I_{2}^{2} + I_{3}^{2} + I_{4}^{2} + \dots}}{I_{1}} \times 100\%$$

TDD and THD definitions are similar

• Only difference is the denominator

$$THD_{I} = \frac{\sqrt{I_{2}^{2} + I_{3}^{2} + I_{4}^{2} + I_{5}^{2} + \dots}}{I_{1}}$$
$$TDD_{I} = \frac{\sqrt{I_{2}^{2} + I_{3}^{2} + I_{4}^{2} + I_{5}^{2} + \dots}}{I_{L}}$$

Total Demand Distortion

- Important to distinguish between TDD and THD (and % of I_L and % of I_1)
- Prevents user from being unfairly penalized during periods of light load
 - Harmonics could appear higher as a percent of a smaller I₁ value

Total Demand Distortion

- Some specifications call for verification measurements at different load levels
 - Worry that THD increases at lower load
- Lower loading
 - THD increases, as suspected
 - TDD decreases
 - Amps of harmonics decrease
- Full load current is the worst case TDD
 - No need for measurements at partial load

Total Demand Distortion – CPX 9000 Example

Harmonic	30 Hz	40 Hz	50 Hz	60 Hz
THD (% of I ₁)	26.7 %	14.1 %	9.1 %	5.9 %
TDD (% of I_L)	3.6 %	4.1 %	4.5 %	4.8 %
All Harmonics	8.2	9.2	10.1	10.8
RMS	31.9	65.8	110.7	183.1
1 (fundamental)	30.8	65.2	110.3	182.3
2	0.1	0.4	1.2	0.9
3	3.1	3.8	3.9	3.9
5	5.4	6.1	6.8	8.3
7	5.1	5.1	4.9	4.3
11	0.2	0.2	0.5	1.2
13	0.4	0.8	1.0	1.2
17	1.5	2.0	2.1	2.1
19	0.8	1.7	2.5	2.5
23	0.3	0.4	0.4	0.3
25	0.3	0.4	0.7	0.7
29	0.0	0.1	0.1	0.3
31	0.2	0.1	0.2	0.3
35	0.1	0.2	0.3	0.4
37	0.2	0.3	0.4	0.5

© 2011 Eaton Corporation. All rights reserved.- Eaton Proprietary

225 A Demand Load

On November 7, 1940, at approximately 11:00 AM, the Tacoma Narrows suspension bridge collapsed due to Wind-induced Vibrations...the bridge had only been open for traffic a feW months.

- The "Self Correcting"
 - Problem
 - Blown Fuses
 - Failed Capacitors
 - Damaged Transformer

Harmonics = Wind (Excites Resonance)

If a capacitor exists on the power system

AND

Harmonic producing loads are in use

You MUST check for harmonic resonance (series and parallel)

- Capacitors not only supply reactive power to the loads in an electrical distribution system they also change the resonance frequency of the system.
- Capacitors are also a "sink" for harmonic currents present in a system (series resonance).
- When the resonance frequency of a system with PF correction capacitors is close to the frequency of a harmonic current generating load **parallel resonance** can occur.

- AC circuits characteristically have inductive and capacitive components and have the means to transfer energy between these components.
- Harmonic resonance occurs when the inductive reactance of a circuit is equal to the capacitive reactance. Resonance can be either series or parallel.
- Recall that inductive reactance increases as the power system frequency increases and the capacitive reactance decreases as the power system frequency increases by the following equations:

and
$$X_{L} = j2\pi f \times L = j\omega L$$
$$X_{C} = \frac{1}{j2\pi f \times C} = (-j)\frac{1}{\omega C}$$

where XL = inductive reactance in ohms

- XC = capacitive reactance in ohms
- f = power system frequency in Hz
- L = component inductance in henries
- C = component capacitance in farads.
- At 60 Hz, the capacitive components have a much higher impedance than the inductive components.

Parallel Resonance – "Amplifier"

• The parallel combination of impedance is:

$$X_{EQUIVALENT} = \frac{jX_L \times (-j)X_C}{jX_L + (-j)X_C}$$

 Since XL and XC have opposite signs, the denominator can equal zero if XL = XC. In reality, the only limiting factor is the difference in resistance between the capacitor and reactor.

Parallel Resonant Example 3rd Harmonic Voltage

Parallel Resonant Example 3rd Harmonic Voltage

Parallel Resonant Example 3rd Harmonic Current

Parallel Resonant Example 3rd Harmonic Current

Parallel Resonant Example 4th Harmonic Voltage

Parallel Resonant Example 4th Harmonic Voltage

Parallel Resonant Example 4th Harmonic Current

Parallel Resonant Example 4th Harmonic Current

Parallel Resonant Example 13th Harmonic Voltage

Series Resonance – "Accidental Filter"

The series combination of impedance is:

$$X_{EQUIVALENT} = jX_L + (-j)X_C$$

Since XL and XC have opposite signs, the summation can equal zero if XL = XC. In reality, the only limiting factor is the difference in resistance between the capacitor and reactor.

Equivalent Series Resonant Circuit

Frequency Scan for Series Resonant Circuit

Series Resonant Example 19th Harmonic Current

Harmonic Resonance - Solutions

- 1. Change the method of kvar compensation (harmonic filter, active filter, etc.)
- 2. Change the size of the capacitor bank to over-compensate or under-compensate for the required kvar and live with the ramifications (i.e. overvoltage or PF penalty).

Harmonic Resonance Switched Capacitor

Rules of Thumb for Capacitors

Are there harmonics?	YES: filtered cap bank		
THDIw/ocap >10% or	NO: standard cap bank		
THDVw/ocap > 3% ?			
Are there 3rd harmonic currents	YES: 2.67 tuned cap		
and is THDI3 > 0.2 THDI5 ?	NO: 4.2 detuned or 4.7 tuned bank		
Is Isc/ IL < 20 ?	Yes : use detuned 3.78 or 4.2 bank		
	NO: use tuned 4.7 bank		
Are there any large size VFDs?	Yes : Smallest cap size >40% of largest VFD size		
Are there any soft starters	Yes : use filtered cap banks or use		
	standard caps in line with electromechanical bypass with time delay.		
Is total cap capacity > 15% of Transformer kVA	Yes : Check for Resonance		

Ferroresonance

Ferroresonance is a special form of resonance which occurs between the magnetizing reactance of a transformer and the system capacitance. Because the state of the magnetizing flux in a transformer may change from cycle to cycle, the resonant waveshape can also change from cycle to cycle.

Ferroresonance is classified as system overvoltage rather than as a harmonic. The waveform is very distorted but a distinct 60 Hz frequency is present. The voltage magnitude can exceed 2.0 per unit and is sustained.

Most Common with Potential Transformers (PT's)

Harmonic Solutions – Product Mix	Eaton Products	Partner Products	Access to Products
Harmonic Studies and Design	Х		
Tuned Filters (LV/MV – Fixed/Switched)	Х		
De-Tuned Filters	Х		
Harmonically Hardened Capacitors	Х		
Active Filters (LV)	Х		
Harmonic Mitigating Transformers	Х		
K-Factor Transformers	Х		
Clean Power (18 Pulse) Drives	Х		
3 rd Harmonic Blocking Filter			X
Broadband Drive Filters		X	
Line Reactors		X	
Static Switched (Transient Free) Filters	X		
Drive Isolation Transformers	Х		
UPS Filter	X		
UPS Active Front End (9390/9395)	X		
Zero Sequence Trap			X
DC Choke (Drives)			X
MV Static VAR Compensator			Х
MV 24 Pulse Drives	Х		

AC Drive Block Diagram

AC Drives and Harmonics

AC Drives and Harmonics

Line-side harmonics can have far-reaching effects on the power system:

- Distribution transformers
- Standby generators
- Communications equipment
- Switchgear and relays
 - Computers, computer systems
- Diagnostic equipment

Who Cares About Harmonics?

- Utilities
- Users
- Maintenance and facility engineers

The power company typically supplies a reasonably smooth sinusoidal waveform:

...but nonlinear devices distort voltage and current waveforms resulting in poor power quality on the distribution grid with further implications

Utilities

- Harmonics can be thought of as power which does no useful work but requires extra generation and distribution capacity
- With the increased number of motors controlled by inverters and other nonlinear power electronics, utilities are delivering a higher percentage of "harmonic power" without a comparable increase in revenue
- Some utilities have introduced billable charges for harmonic distortion

Users

- Control capital expenses
- Needs to be a good citizen in the electrical community via IEEE-519 compliance
- Seek increased uptime and profits
- Want to protect electrical assets
- Work to add value to facilities
- Desire reduced energy expenses

Maintenance and Facility Engineers

Harmonics can have far-reaching effects on the power system:

System	Concern
Distribution transformers	Overheating and efficiency loss, leads to Over-sizing and more increased losses
Standby generator	Distortion dramatically reduces capacity, Synch issues with zero crossings for relays
Communications equipment	Downtime and loss of productivity
Computers and computer systems	Nuisance tripping and downtime
Diagnostic equipment	Nuisance tripping and erroneous results
Utility	Charges for harmonic pollution

System Inefficiency with Harmonics

Harmonics and Heating

Std Transformer – Max Temp – 176 F

Load 100% Harmonics

HMT – Max Temp – 105 F

-146.6

-138.6

-130.6

-122.6

-114.6

-106.6

- 98.6

- 90.6

- 82.6

- 74.6

L 66.6

۴F

Transformer Family Testing – Affect of Harmonic Load on Efficiency

What Will It Take?

- Begin with a facility analysis
- Then interpret the IEEE-519 as it applies to your facility
- Now select the most cost effective harmonic mitigation technique
- Finally, be sure to analyze the proposed facility design again and celebrate the cost savings and increased efficiency of optimum harmonic mitigation

- May be as simple as making a determination of the ratio of drive load to the capacity of the utility transformer (harmonic dilution)
 - If 10% or less, no problem
 - If 10 20%, conduct a harmonic analysis study
 - If above 20%, mitigation required
- When further study is required, a system analysis service can recommend cost effective harmonic mitigation solutions based on a facility single line diagram.

How to Eliminate Harmonics

There are several alternatives for the attenuation of harmonics, some of which offer distinctive advantages over others. Among the most popular methods are:

- Passive filters
- Additional inductive reactance
- Phase-shifted sources
- . 12 pulse converters
- Active filters
- . The 18 Pulse Clean Power converter
- · 24 Pulse MV Drives

Harmonic Solutions

Harmonic Solutions - Commercial

Commercial Power Systems (and Data Centers)

- Oversized Equipment (generator, transformers, neutrals)
- K-Rated Transformers
- Harmonic Mitigating Transformers
- 3rd Harmonic Blocking Filter
- Harmonic Filters (required for PF Correction)
- UPS Filter
- Low Distortion Loads
 - UPS Active Rectifier
 - PF Corrected Power Supplies
 - Low Distortion Lighting Ballasts

Oversized Equipment

Standard and K-Rated Transformers

- 3rd harmonic current flowing in the phases adds up in neutral.
- On primary, 3rd current is trapped in delta if balanced. Otherwise, the difference flows in the phases.
- Balanced 3rd currents are called "triplen" harmonics (3rd, 9th, etc.)
- Delta-wye transformers are said to "trap" triplen harmonics in delta. They do not eliminate other harmonics.
- K-rated are typically delta-wye.
 - K-4 Drives
 - K-13 Computer Loads
 - > K-13 (K-20, etc.) Overkill
 - Historically, K-rated = low efficiency

Secondary Treatment of Triplens (HMT's)

Powering Business Worldwide

HMT Secondary

- Opposing magnetic fields *triplens* aren't magnetically coupled to primary
- Loads continue to operate as designed
- Minimizing impact on electrical infrastructure

Harmonic Mitigating Transformers

Use *different secondary* winding to treat these

Harmonic Mitigating Transformers

Harmonics 1 THD103.1 %f 1 K 9.4 Ō 0:00:20 <u>⊡</u>-C: 100% 5th & 7th harmonics 50% Use Phase-Use different **Shifting** to secondary ***** - -THONC: treat these 3 -15 13 17 11 winding to 03/27/06 13:42/2 1201 6002 3.0 WYE DEPHULT ALL3 treat these U A W **Triplen Harmonics**

HMT 5th and 7th Cancellation

Powering Business Worldwide

Say we have a three story building with a variety of loading. How much 5th and 7th cancellation can we expect?

Transformer Technology 'Rule of Thumb' Comparison Chart

Transformer Type	Approx. Cost	Energy Usage	Power Quality Attributes
Standard Delta-Wye TP-1, Copper, 115C	1X	say 100W	None
K-Factor K13 Copper, 115C	1.5X - 2X	130W 30% more	Designed to Withstand Heating Effects
HMT TP-1, Copper, 115C	1.5X - 4X	40W 250% less	Corrects Root Cause

- YES, The INITIAL cost of an HMT is greater than the other transformers, however the Energy Savings you receive over the life of the HMT (20-30 years) pays back that difference multiple times!
- Similar thinking to using a Compact Fluorescent vs. Incandescent Lamp
- Most appropriate for New Construction

Harmonic Filter (PF Correction)

Commercial facilities requiring PF correction for utility penalties often use one of the following compensation methods:

- PF Capacitors (standard or switched) risk of harmonic resonance
- "Harmonically hardened" capacitors like "K-rated" transformer
- Harmonic Filter
 - Tuned to reduce overall harmonic distortion (typically 4.7th "tuning")
 - De-tuned to avoid resonance (typically 4.2nd "tuning")
- Active Harmonic Filter (both harmonic compensation and PF correction)

Capacitors Hardened Capacitors OS Harmonic Filters Active Filters

How Does a Filter Work?

Powering Business Worldwide

Computer Simulation/Modeling

Parallel Resonance with Capacitors

Parallel resonance causes "amplification" of harmonic currents and high voltage distortion

Filter Design Considerations

Frequency Scan (Normal and Generator Source)

Filters control resonance, redirect harmonic currents and reduce voltage distortion

Filters Control Parallel Resonance Point

Frequency Scan – Staged Filter

Parallel resonance harmonic is usually about 1 order below the "tuning" frequency

UPS Filter

UPS front end (rectifier) tuned filter

- 6-pulse tuned to 5th
- 12-pulse tuned to 11th

Generally switched on/off at 25-35% load

May be turned off when on generator (avoid leading PF)

Harmonic Filter ON

Harmonic Filter OFF

Low Distortion Loads

- Rectifier Solutions UPS, Drives, Battery Chargers
 - Active front end on UPS (Powerware 9390/9395) and some drives
 - Industry driven toward component (load) solutions

• Generators do not need to be oversized with Active Rectifier UPS

Low Distortion Loads

Data Centers/Servers – PF Corrected (Harmonic Filter)

 Switch Mode Power Supplies (SMPS) have changed over to PF Corrected Power Supplies

Industry driven toward component (load) solutions

Harmonic Solutions – Industrial

Industrial System (Drives and Rectifiers)

- Line Reactors
- Drive Isolation/Harmonic Mitigating Transformers
- Clean Power (18 Pulse) Drives
- Broadband Drive Filters
- PF Solutions
 - Harmonically Hardened Capacitors
 - Tuned Filters LV/MV
 - De-Tuned Filters LV/MV
 - Static Switched (Transient Free) Filters
- Active Filters

Drive and Rectifier Solutions

Drive without line reactor Drive with line reactor Best "cost/kVA" solution for drive harmonics

Reactor/Isolation Transformer

w/ isola trans

Order	Magnitude	Angle
1	33.41	-16
3	0.90	-186
5	9.92	101
7	2.00	-182
11	1.87	-154
13	1.10	-127
17	0.67	-70
19	0.67	-50

Order	Magnitude	Angle
1	33.41	-14
3	0.60	-160
5	15.97	114
7	7.48	-110
11	1.77	-89
13	1.40	-1
17	0.87	60
19	0.57	122

Effect of Drive Line Reactors

SVX Drives – Equivalent Reactance

Industrial power system

Drive Solution Demonstrator Phase Shifting & Line Reactors Drive 1

500V	Туре	480 V 60 Hz
Fr4	0003	0.65%
	0004	0.98%
	0005	1.31%
	0007	1.63%
	0009	1.33%
	0012	1.71%
Fr5	0016	1.63%
	0022	2.18%
	0031	2.99%
Fr6	0038	3.16%
	0045	3.88%
	0061	4.59%
Fr7	0072	3.73%
	0087	4.41%
	0105	5.33%
Fr8	0140	3.00%
	0168	4.00%
	0205	4.80%
Fr9	0261	3.35%
	0300	4.26%
Fr10	0385	2.94%
	0460	3.77%
	0520	3.75%
	590	2.89%

AC Drives and Harmonics

6-pulse converter with 3% Reactor waveform:

Note that diode converter bridges produce harmonics according to the rule h = nk +/- 1, where *h* is the harmonic produced, *n* is the number of diodes and *k* is an integer. Harmonic content is approximately 50% of that produced by a converter without choke.

Phase Shifting/Cancellation

12 Pulse, 18 Pulse or 24 Pulse Cancellation by Design

12 Pulse Example

Harmonics and Cancellation

Without Cancellation

24 Pulse Cancellation

18 Pulse Rectifier

18 Pulse Design

Eaton "Clean Power Drive" – CPX9000

18 Pulse Converters

Method

• 18-Pulse converter design which draws an almost purely sinusoidal waveform from the source

Benefits

- Meets the IEEE standards in every case
- Attenuates all harmonics up to the 35th
- Insensitive to future system changes
- Increases life of drive through incredibly stable DC bus voltage (18 small inputs instead of 6 large ones)

Concerns

• Not cost effective at small HP levels (50HP and smaller)

AC Drives and Harmonics

18-pulse "Clean Power" waveform:

Note that the reduction in harmonics is so dramatic below 17th harmonic that the scale actually drops to 1.0 as max. 18 pulse clean power drives will meet IEEE519 in all practical instances, with some sizes as low as 3% I_{THD}

Drive Dedicated (Broadband) Filter

Drive with Dedicated Filter

Active Filters

- "Senses" harmonics and injects equal and opposite harmonic current into the line
- Tests PF and corrects by injecting phase displaced fundamental current
- Fast response for dynamic loads
- Typically highest cost

From IEEE519A Draft

Lab Simulations and Videos

http://www.eaton.com/experience

- 4 drives without phase shifting
- 4 drives with phase shifting (24 pulse system)
- Active Fitler
- 18 pulse (clean power) drive
- Tacoma Narrows Bridge Resonance Example

Cost of Harmonic Correction

Description	Cost \$/kVA	Cost p.u.
Reactor	3	1
Capacitors (LV)	12	4
Filter (MV)	12	4
Filter (MV) Switched	15	5
K-Rated Transformer	20	7
Capacitors (LV) Switched	25	8
Filter (LV)	35	12
Filter (LV) Switched	45	15
Harmonic Mitigating Transformer	50	17
Blocking Filter (3rd's)	100	33
Broadband Filter (Drives)	100	33
Active Filter	150	50
Per unit costs compared to reactor pricing		
Note that prices are generalized for comparison only		
Some equipment must be fully rated for loads - others can be partially rated		
Capacitors are shown for reference only		

- Useful to measure and limit harmonics
- IEEE Std 519-1992 defines limits
- Confusion on how to apply the limits
- Be clear when discussing harmonics
 - Current or voltage?
 - Expressed as percent or in actual quantities?
 - If percent, % of I_1 or % of I_L ?

- Intent of IEEE-519
 - Ensure utility provides a "clean" voltage
 - Limit harmonic current from customers
- Goal of IEEE-519
 - Prevent one customer from causing problems for another, or for the utility

- Limits assessed at the PCC
- PCC is the point where another customer can be served
 - Regardless of metering location
 - Regardless of equipment (transformer) ownership
- I_{SC}/I_L ratio must be known to determine which harmonic current limits apply

- TDD versus THD
 - TDD: Harmonics expressed as % of I_L
 - THD: Harmonics expressed as % of I₁
- IEEE 519 harmonic current limits written in terms of TDD, and % of I_L
 - Prevents users from being unfairly penalized during periods of light load

Help (for Harmonics)!

- SKM Harmonics
 - Taught by Carnovale/Dionise Warrendale
 - http://www.skm.com/training.shtml (Oct. 5-6, 2011)
- EESS
 - Tom Dionise
 - Visuth Lorch
 - David Shipp
- Products (Capacitors and Harmonic Filters)
 - Shree Sathe
 - Dave Simmons

Wrap Up

- Harmonic solutions vary greatly in effectiveness and cost (technical vs. economic tradeoff)
- Commercial power systems often involve single phase harmonics (from lighting and computer loads).
 - Transformers are usually the most appropriate solution for commercial systems
- Industrial power system harmonics are usually caused by drives and other 3-phase rectifier loads.
 - Line reactors and harmonic filters are generally used in conjunction with phase shifting transformers for Industrial systems.
- Energy savings has become the buzz with PF correction and harmonic solutions be careful...
- Learn more at: <u>www.eaton.com/experience</u>
 Source 2011 Eaton Corporation. All rights reserved.- Eaton Proprietary

